
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 557

An Energy Efficient Analysis of Hardware

Prefetching Techniques:A Review

Mouneshwar Kanamadi

Department of CSE, Ashokrao Mane Group of Institutions, Vathar tarf vadgaon,

Tal. Hatkanangle, Dist. Kolhapur, India

ABSTRACT: The paper presents a review on different hardware prefetching techniques. It is written to be accessible to researchers

familiar to hardware prefetching. Both the historical basis of the field and a broad selection of current work are summarized.

Memory latency and bandwidth are progressing at a much slower pace than processor performance. A widely explored approach to

improve cache performance is hardware prefetching that allows the pre-loading of data in the cache before they are referenced. Data

prefetching has been considered as an effective way to mask data access latency caused by cache misses and to bridge the performance

gap between processor and memory. Different hardware architecture and prefetching patterns are considered in this paper. Some of

the energy preservation schemes are discussed and the results obtained from different methods are given in brief.

Keywords: Prefetching, Context Based Prefetching.

I. INTRODUCTION

Data prefetching is a data access latency hiding technique.

Data prefetching has been considered as an effective way

to mask data access latency caused by cache misses and to

bridge the performance gap between processor and

memory. With hardware, data prefetching brings data

closer to a processor before it is actually needed. In order

to reduce CPU stalling on a cache miss, data prefetching

predicts future data accesses. Many prefetching techniques

have been proposed in the last few years to reduce data

access latency by taking advantage of newer architectures.

A data prefetching strategy has to consider various issues

in order to mask data access latency efficiently. It should

be able to predict future accesses accurately and to move

the predicted data from its source to destination in time.

This hardware prefetching has to be carried out in the

energy efficient manner, so that all these strategies can be

applicable in the mobile device and the embedded system.

In hardware prefetching, the hardware alone decides what

data to prefetch and when and where to prefetch the data.

 In hardware controlled data prefetching,

prefetching is implemented in hardware. Various methods

support hardware controlled prefetching.

 The time to issue a prefetch instruction has

significant effect on the overall performance of prefetching.

Prefetched data should arrive to its destination before a raw

cache miss occurs.

The efficiency of timely prefetching depends on

total prefetching overhead (i.e. the overhead of predicting

future accesses plus the overhead in prefetching data) and

the time for the occurrence of next cache miss.

 Destination of prefetched data is another major

concern of prefetching strategy. Prefetching destination

should be closer to CPU than a prefetching source in order

to obtain performance benefits. Prefetching instructions can

be issued either by a processor which requires data or by a

processor that provides such a service. History-based

prefetching is one of the basic methods- according to it

data access history or cache miss history is used to predict

future data access. This method has been proved effective

for regular data access patterns, but for irregular codes, it‟s

difficult, inaccurate, it not only can not improve the

performance but also adds the overhead of cache miss. So

different newer methods are proposed to avoid these

overheads.

 The remainder of this paper will be organized as

follows. First we present the hardware prefetching by

context based prefetching [1], then by dynamic multi-core

hardware prefetching technology [2], then we present some

energy schemes of hardware prefetching by using

heterogeneous interconnects [3] and some complier and

new power aware prefetching engine [4] in the section 2.

In section 3, we deduce a conclusion.

II. RELATED WORK

First there are two hardware prefetching techology

and then we have two energy efficient strategies:

Improving the Effectiveness of Context-based Prefetching

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 558

with Multi-order Analysis[1], Analysis and improvement

of dynamic multi-core hardware prefetch technology based

on pre-execution[2], Energy-Efficient Hardware

Prefetching for CMPs using Heterogeneous

Interconnects[3] and Energy-Efficient Hardware Data

Prefetching[4].

A. Improving the Effectiveness of Context-based

Prefetching with Multi-order Analysis.

There exist many commercial high-performance data

prefetching techniques, among them, the context based data

prefetching has received attention in recent years due to its

general applicability and high accuracy. There exist the

limitation on the context-based prefetching that most of

them are single order context analysis and prediction.

Motivated by the observations, the new context-based

prefetching method named Multi-Order Context-based

(MOC) prefetching to address the drawback of existing

context-based prefetching and to increase the overall

prefetching effectiveness.

The essential idea of the context-based data

prefetching is to detect the correlation between current

context (the miss access information) and the past history

and make predictions for data prefetching. A context-based

prefetching method usually builds a state transition diagram

with the access address strides (deltas) as states, and

characterizes the correlation among miss address streams.

Depending on the length of the context considered, the

prefetching strategy can adjust the prefetching overhead and

confidence in prefetching.

Fig. 1. Multi-Order Context-based Prefetching

StrategyThe mechanism of multiple order context-

based prefetching is described as follows. This multi-order

context-based prefetching has a three-level table

organization as shown in Fig. The first two levels follow

the design of the Data-Access History Cache (DAHC),

which includes a Data Access History (DAH) table and

index tables, PC Index Table (PIT) and Address Index

Table (AIT). The DAH table stores the detailed data access

history information. It gives high priority to recent access

history, and thus filters outdated history automatically.

The index tables provide the view and the

detection of the correlations from the instruction stream

and address stream respectively. The third level table is the

Data Access Prediction (DAP) table. Each DAP entry

includes two fields. The first one stores the predicted

address corresponding to the context indicated by the entry

index. The second field stores a confidence counter that is

used to represent how strong the prediction is. DAP entries

are indexed by the hashed form of the contexts derived

from a hash function. In the current design, they select FS-

5 hash function to produce the hashed context as it has

better performance than other choices. The order-1

prefetching is similar to the distance prefetching based on

DAHC. The order-2 prefetching uses the sequence of

strides between miss addresses as the context as shown in

Fig. When a new data access is captured in DAH, the

prefetcher searches the PIT to find the last miss address

from the same PC. It then follows the PC chain to retrieve

the miss sequence from the same PC.

On average, MOC reduces L2 cache misses by

over 65%, which is more than two times of what the

distance prefetching can achieve. Cache misses are reduced

significantly for most benchmarks including five

benchmarks whose misses are reduced over 90%.

B. Analysis and improvement of dynamic multi-core

hardware prefetch technology based on pre-

execution.

Multi-core processor has been widely used for lower

power consumption and high performance, but it also

aggravates the “Memory Wall” problem, the increasing

memory access latency limits the further improvement of

multi-core‟s performance. So here three important

strategies of prefetching are given such as software-

controlled strategies, hardware-controlled strategies, hybrid

hardware/software-controlled strategies, where Softwore-

controlled prefetching Software-controlled strategies

enables a programmer or a compiler to insert prefetching

instructions into programs by exploiting the applications

memory access patterns, hardware prefetching consists of

two methods such as History-based prefetching: According

to which data access history or cache miss history are used

to predict future data access. This method has been proved

effective for regular data access patterns, but for irregular

codes, it‟s difficult, inaccurate, it not only can not improve

the performance but also adds the overhead of cache miss,

and another method is Pre-execution-based prefetching,

this mechanism uses a dedicated thread or an idle core of a

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 559

CMP to prefetch data for the thread or cores running the

main program, this method are beneficial to applications

with regular or random accesses. And the last method is

Hybrid hardware/software-controlled strategies Equations,

these strategies are gaining popularity on processors with

multi-thread support. On these processors, threads can be

used to run complex algorithms to predict future accesses.

These methods require hardware support to run threads that

are specially executed to prefetch data.

The main components of hardware prefetching involves

a) Run-ahead execution: This method allows

microprocessors pre-process instructions during cache miss

cycles instead of stalling.

b) FE(Future Execution): It use an idle core to

prefetch data for another core running program.

c) DCE(Dual-core execution): This technique

consists of two superscalar cores (a front and back core)

coupled with a queue, the front processor fetches and

preprocesses instruction streams and retires processed

instructions into the queue for the back processor to

consume.

Run-ahead execution is the first proposed

prefetching technique based on out-of-order execution,

DCE(Dual-core Execution) is motivated partly from run-

ahead execution, and if both run-ahead execution and

FE(Future Execution)are employed together, their

cumulative effect is quite impressive.

Run ahead Execution: Principle- The concept of run-ahead

execution was first proposed for in-order processors and

further extended to perform prefetching for out-of-order

architectures. In run ahead execution, when an instruction

window is blocked by a long latency cache miss, the state

of the processor is check pointed and the processor enters

the „run-ahead‟ mode by providing an invalid result for the

blocking instruction and letting it graduate from the

instruction window. In this way, the processor can continue

to fetch and execute.

Then Run ahead execution in future execution one

core of a CMP to prefetch data for a thread running on

another core. The original unmodified program executes on

the first core, the prefetching core simply executes a copy

of all non-control instructions after they have executed in

the primary core, As each instruction commits on the way

to the second core, it updates the value predictor with its

current result, and it‟s output is replaced by a prediction of

the likely output that the nth future instance of this

instruction will produce. After that, the committed

instruction is sent to the second core along with the

predicted value, where it is injected into the dispatch stage

of the pipeline since it has decoded in the regular core.

Instructions are injected in the commit order in the first

core to preserve the program semantics. According to the

spatial locality, FE assumes that the same sequence of

instructions will execute again in the future, the second

core essentially executes n “iterations” utilizing the future

values ahead of the non-speculative program running in the

first core. The instructions speculatively executed on the

second core issue load requests the main program will

probably reference in the future. Figure 2 shows the

architecture

Fig. 2. The FE architecture

Then Dual-Core Execution is introduced

1) Principle: Dual-core execution consists of two

superscalar cores (a front and back core) coupled with a

queue. The front core fetches an instruction stream in order

and executes instructions in its normal manner except for

those load instructions resulting in a long-latency cache

miss. An invalid value is used as the fetched data to avoid

the cache-missing load blocking the pipeline, similar to the

run-ahead execution. When instructions retire (in order)

from the front core, they are inserted into the result queue

and will not update the memory.

The second superscalar core, called the back processor,

consumes the preprocessed instruction stream from the

result queue and provides the precise program state (i.e.,

the architectural register file, program counter, and

memory state) at its retirement stage. In DCE, the front

core benefits the back processor in two major ways: (1)a

highly accurate and continuous instruction stream as the

front core resolves most branch mispredictions during its

preprocessing, and (2) the warmed up data caches as the

cache misses initiated by the front processor become

prefetches for the back processor.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 560

Fig. 3. The DCE architecture

DCE achieves higher performance compared to run-

ahead mechanism and future Execution, for the pipeline

will not stall when L2 cache miss occurs and DCE could

avoid invalid prefetching. DCE provides an interesting

non-uniform way to handle branches. The branches that

depend on short latency operation are resolved promptly at

the front core while only the branches depending on cache

miss are deferred to the back core. Though DCE improves

IPC, the efficiency of CPU is decreased, all instruction

executes twice except for loads and branches and most

instruction executed on two cores gets same result.

C. Energy-Efficient Hardware Prefetching for CMPs

using Heterogeneous Interconnects.

In the last years high performance processor designs

have evolved toward Chip-Multiprocessor (CMP)

architectures that implement multiple processing cores on a

single die. As the number of cores inside a CMP increases,

the on-chip interconnection network will have significant

impact on both overall performance and power

consumption. CMP designs are likely to be equipped with

latency hiding techniques like hardware prefetching in

order to reduce the negative impact on performance that,

otherwise, high cache miss rates would lead to. This

method shows how to reduce the impact of prefetching

techniques in terms of power (and energy) consumption in

the context of tiled CMPs. This proposal is based on the

fact that the wires used in the on-chip interconnection

network can be designed with varying latency, bandwidth

and power characteristics. By using a heterogeneous

interconnect, where low-power wires are used for dealing

with prefetched lines, significant energy savings can be

obtained.

One of the greatest bottlenecks to provide high

performance and energy efficiency in such tiled CMP

architectures is the high cost of on-chip communication

through global wires, wires pose major performance and

power consumption problems as technology shrinks and

total die area increases.

A tiled CMP architecture consists of a number of

replicated tiles connected over a switched direct network.

Each tile contains a processing core with primary caches

(both instruction and data caches), a slice of the L2 cache,

and a connection to the on-chip network. The L2 cache is

shared among the different processing cores, but it is

physically distributed between them. Therefore, some

accesses to the L2 cache will be sent to the local slice while

the rest will be serviced by remote slices. In addition, the

L2 cache stores the directory information needed to ensure

coherence between the L1 caches. On a L1 cache miss, a

request is sent down to the appropriate tile where further

protocol actions are initiated based on that block‟s

directory state, such as invalidation messages, intervention

messages, data write back, data block transfers, etc.

They propose to use two wire implementations

apart from baseline wires (B-Wires): power optimized

wires (PW-Wires) that have fewer and smaller repeaters,

and bandwidth optimized wires (L-Wires) with higher

widths and spacing. Then, coherence messages are mapped

to the appropriate set of wires taking into account, among

others, their latency and bandwidth requirements. There are

a variety of message types traveling on the interconnect of

a CMP, each one with properties that are clearly distinct. In

general, we can classify messages into the following

groups: Request messages, that are generated by cache

controllers in response to L1 cache misses, or a likely

future L1 cache miss when prefetching is considered, and

sent to the corresponding home L2 cache to demand

privileges over a memory line. Response messages to these

requests, generated by the home L2 cache controller or,

alternatively, by the remote L1 cache that has the single

valid copy of the data, and they can carry the memory line

or not. Coherence commands, that are sent by the home L2

cache controller to the corresponding L1 caches to ensure

coherence. Coherence responses sent by the L1 caches

back to the corresponding home L2 in response to

coherence commands. Replacement messages that the L1

caches generate in case of exclusive or modified lines

being replaced (replacement hints are not sent for lines in

shared state).

Interconnect Design for Efficient Message

Management: PW-Wires have the same area cost than

baseline wires while they are twice slower. Fixing the

number of PW-Wires is not a naive task. They will be used

for sending prefeching-related messages (in particular,

prefetch replies with data), whereas the remaining area will

be consumed by B-Wires employed for sending ordinary

messages and short prefeching-related messages. The

proportion between PW- and B-Wires has a direct impact

in both the execution time and the power consumption of

the interconnect.

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 561

By tuning wire width and spacing, it is possible to

design wires with varying latency and bandwidth

properties. Similarly, by tuning repeater size and spacing, it

is possible to design wires with varying latency and energy

properties. Results obtained through detailed simulations of

a 16-core CMP show that the proposed on-chip message

management mechanism can reduce the power consumed

by the links of the interconnection network about 23% with

degradation in execution time of 2%. Finally, these

reductions translate into overall CMP savings of up to 10%

(4% on average) when the consumed energy is considered.

D. Energy-Efficient Hardware Data Prefetching.

This paper presents a set of new energy-aware

techniques to overcome prefetching energy. These include

compiler-assisted and hardware-based energy-aware

techniques and a new power-aware prefetch engine that can

reduce hardware prefetching related energy consumption

by 7–11X . Most of the energy overhead due to hardware

prefetching comes from prefetch-hardware-related energy

cost and unnecessary L1 data cache lookups related to

prefetches that hit in the L1 cache. Hardware-based

prefetching mechanisms need additional components for

prefetching data based on access patterns. Prefetch tables

are used to remember recent load instructions and relations

between load instructions are set up. These relations are

used to predict future (potential) load addresses from where

data can be prefetched. Hardware-based prefetching

techniques studied in this paper include sequential

prefetching

Sequential Prefetching: Sequential prefetching

schemes are based on the One Block Look ahead (OBL)

approach; a prefetch for block b+1 is initiated when block

b is accessed. OBL implementations differ based on what

type of access to block initiates the prefetch of b+1.

Prefetch-on-miss sequential algorithm initiates a prefetch

for block b+1 whenever an access for block results in a

cache miss. If b+1 is already cached, no memory access is

initiated.

Stride Prefetching: Stride prefetching monitors memory

access patterns in the processor to detect constant-stride

array references originating from loop structures. This is

normally accomplished by comparing successive addresses

used by memory instructions. Since stride prefetching

requires the previous address used by a memory instruction

to be stored along with the last detected stride, a hardware

table called the Reference Prediction Table (RPT), is added

to hold the information for the most recently used load

instructions. Each RPT entry contains the PC address of the

load instruction, the memory address previously accessed

by the instruction, a stride value for those entries that have

established a stride, and a state field used to control the

actual prefetching.

C: Pointer Prefetching: One scheme for hardware-based

prefetching on pointer structures is dependence-based

prefetching that detects dependencies between load

instructions rather than establishing reference patterns for

single instructions. Dependence-based prefetching uses two

hardware tables. The correlation table (CT) is responsible

for storing dependence information. Each correlation

represents dependence between a load instruction that

produces an address (producer) and a subsequent load that

uses that address (consumer). The potential producer

window (PPW) records the most recent loaded values

and the corresponding instructions. When a load commits,

its base address value is checked against the entries in the

PPW, with a correlation created on a match. This

correlation is added to the CT.

D. Combined Stride and Pointer Prefetching: a

combined technique that integrates stride prefetching and

pointer prefetching was implemented and evaluated. The

combined technique performs consistently better than the

individual techniques on two benchmark suites with

different characteristics.

III. CONCLUSION

 This survey concludes that, hardware prefetching

of data is done in a reliable and fast way using different

schemes such as multi-order analysis and multi-core

hardware based on pre-execution. Along with this there

exists some methodology to carry out these prefetching

operations in an energy efficient manner by using

techniques, such as, complier assistance and low power

consumption wires.

 REFERENCES

[1] Yong Chen, Huaiyu Zhu, Hui Jin, and Xian-He Sun,

“Improving the Effectiveness of Context-based Prefetching

with Multi-order Analysis”, 39th International Conference on
Parallel Processing Workshops (ICPPW), ISSN: 1530-2016,

E-ISBN: 978-0-7695-4157-0, 2010, pp. 428 – 435.

[2] Juan Fang and Hongbo Zhang,“Analysis and improvement of
dynamic multi-core hardware prefetch technology based on

pre-execution”, Fifth International Conference on Frontier of

Computer Science and Technology, E-ISBN: 978-0-7695-
4139-6, 2010, pp. 387-391.

[3] Antonio Flores, Juan L. Arag´on and Manuel E. Acacio,

“Energy-Efficient Hardware Prefetching for CMPs using
Heterogeneous Interconnects” IEEE 18th Euromicro

Conference on Parallel, Distributed and Network-based
Processing, ISSN: 1066-6192 2010, pp. 147-154.

[4] Yao Guo, Pritish Narayanan, Mahmoud Abdullah
Bennas, Saurabh Chheda, and Csaba Andras Moritz,
“Energy-Efficient Hardware Data Prefetching”, IEEE

http://www.ijarcce.com/

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 8, October 2012

Copyright to IJARCCE www.ijarcce.com 562

Transactions on Very Large Scale Integration (VLSI) Systems,

Vol. 19(2), February 2011,pp. 250-263.
[5] Byna S., Yong Chen, Xian-He Sun, “A Taxonomy of Data

Prefetching Mechanisms”, International Symposium on

Parallel Architectures, Algorithms, and Networks, ISSN:
 1087-4089, 2008, pp. 19 - 24.

[6] Srinath S., Mutlu O., Hyesoon Kim, Patt Y.N., “Feedback

Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers”, IEEE 13th

International Symposium on High Performance Computer

Architecture, E-ISBN: 1-4244-0805-9, 2007, pp. 63 - 74.
[7] Nesbit K.J., Smith, J.E., “Data Cache Prefetching Using a

Global History Buffer”, IEE Proceedings- Software, ISSN:

 1530-0897, 2004, p. 96.

http://www.ijarcce.com/

